一些ME专业提升的论文。
Author's personal copy
Available online at
Comput.MethodsAppl.Mech.Engrg.197(2008)
2131–2146
/locate/cma
Afastimmersedboundarymethodusinganullspaceapproach
andmulti-domainfar- eldboundaryconditions
TimColonius*,KunihikoTaira
DivisionofEngineeringandAppliedScience,CaliforniaInstituteofTechnology,CA91125,USAReceived21March2007;receivedinrevisedform3August2007;accepted6August2007
Availableonline12September2007
Abstract
Wereportonthecontinueddevelopmentofaprojectionapproachforimplementingtheimmersedboundarymethodforincompress-ible owsintwoandthreedimensions.BoundaryforcesandpressureareregardedasLagrangemultipliersthatenabletheno-slipanddivergence-freeconstraintstobeimplicitlydeterminedtoarbitraryprecisionwithnoassociatedtime-steprestrictions.Inordertoaccel-eratethemethod,wefurtherimplementanullspace(discretestreamfunction)methodthatallowsthedivergence-freeconstrainttobeautomaticallysatis edtomachineroundo .Byemployingafastsinetransformtechnique,thelinearsystemtodeterminetheforcescanbesolvede cientlywithdirectoriterativetechniques.Amulti-domaintechniqueisdevelopedinordertoimprovefar- eldboundaryconditionsthatarecompatiblewiththefastsinetransformandaccountfortheextensivepotential owinducedbythebodyaswellasvorticitythatadvects/di usestolargedistancefromthebody.Themulti-domainandfasttechniquesarevalidatedbycomparingtotheexactsolutionsforthepotential owinducedbystationaryandpropagatingOseenvorticesandbyanimpulsively-startedcircularcyl-inder.Speed-upsofmorethananorder-of-magnitudeareachievedwiththenewmethod.Ó2007ElsevierB.V.Allrightsreserved.
1991MSC:76D05;76M12PACS:47.11.+j
Keywords:Immersedboundarymethod;Fractionalstepmethod;Projectionmethod;Nullspacemethod;Vorticity/streamfunctionformulation;Far- eldboundaryconditions;Multi-domainmethod;FastPoissonsolver;Finitevolumemethod;Incompressibleviscous ow
1.Introduction
Intheimmersedboundarymethod(IBmethod),immersedsurfacesaregeneratedbyforcesatasetofLagrangianpoints[29,20,19].The owissolvedonanEuleriangridthatdoesnotconformtothebodygeometry–typicallyauniformCartesiangridisused.Theboundaryforcesthatexistassingularfunctionsalongthesurfaceinthecontinuousequationsaredescribedbydiscretedeltafunctionsthatsmear(regularize)theforcinge ectovertheneighboringEuleriancells.
Correspondingauthor.
E-mailaddresses:colonius@caltech.edu(T.Colonius),kunihiko@cal-tech.edu(K.Taira).
0045-7825/$-seefrontmatterÓ2007ElsevierB.V.Allrightsreserved.doi:10.1016/j.cma.2007.08.014
*
IntheoriginalIBmethod,surfaceswereviewedas ex-ibleelasticmembraneswithaconstitutiverelation(e.g.Hooke’slaw)relatingtheforcestothemotionoftheLagrangianpoints[28].Thistechniquewaslaterextendedtosurfaceswithprescribedmotion(andinparticularrigidbodies)bytakingthespringconstanttobelarge[2,16].Goldsteinetal.[9]appliedtheconceptoffeedbackcontroltocomputetheforceontherigidimmersedsurface.Thedi erencebetweenthevelocitysolutionandtheboundaryvelocityisusedinaproportional-integralcontroller.Con-stitutivelawsareeliminatedinthedirectforcingmethod[21,7];forcinginthemomentumequationisdeterminedbypenalizingtheslipatthe(interpolated)surface.Fortheaforementionedtechniquesthatutilizeconstitutiverela-tions,thechoiceofgain(sti ness)rgegain