一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462145
vexact¼
C
2pðL=2Þ
;
ð55Þ
whereasthesolutionwithDirichletboundaryconditionsis
uCimages¼X1X1aLiþL2paðÀ1Þiþji¼À1j¼À1aLiþLrjÞ2;ð56Þþðasothattheerrorcanbewritten(aftersimilarsimpli cationstoanalysisintheprevioussection)
¼uimages(
Àuexact
¼C p pX12pÀ2þp
arcsch2arþarðÀ1Þi½cschðcþiða;rÞÞi¼1
þcschðcÀÞÞ
'
iða;rð57ÞwherecÆiða;rÞ¼2arð1Æ2aiÞ.Again,wecanexpandthetermsforlargea.Inthiscase,however,caremustbetakeninevaluatingthesumforlargeasincethesumiszeroto rstorderina.Weobtainasimilarresulttotheprevioussection,namely
$
C
minðL;rLÞ
4ÀNg:
ð58Þ
Afurthercancellationbetweenthesecondandthirdtermsontheright-handsideofEq.(57)occurswhenr=1.Wecanthenshowthat $
CÀNL
16g
whenr¼1:
ð59Þ
References
[1]J.P.Berenger,Aperfectlymatchedlayerfortheabsorptionofelectromagneticwaves,put.Phys.114(1994)185–200.
[2]R.P.Beyer,R.J.LeVeque,Analysisofaone-dimensionalmodelfortheimmersedboundarymethod,SIAMJ.Numer.Anal.29(2)(1992)332–364.
[3]A.B.Cain,J.H.Ferziger,W.C.Reynolds,Discreteorthogonalfunctionexpansionsfornon-uniformgridsusingthefastFouriertransform,put.Phys.56(1984)272–286.
[4]W.Chang,F.Giraldo,B.Perot,Analysisofanexactfractionalstepmethod,put.Phys.180(2002)183–199.
[5]T.Colonius,Modelingarti cialboundaryconditionsforcompress-ible ow,Annu.Rev.FluidMech.36(2004)315–345.
[6]T.Colonius,H.Ran,Asuper-grid-scalemodelforsimulatingcompressible owonunboundeddomains,put.Phys.182(2002)191–212.
[7]E.A.Fadlun,R.Verzicco,P.Orlandi,J.Mohd-Yusof,Combinedimmersed-boundary nite-di erencemethodsforthree-dimensionalcomplex owsimulations,put.Phys.161(2000)35–60.
[8]R.Glowinski,T.W.Pan,J.Pe
´riaux,DistributedLagrangemultipliermethodsforincompressibleviscous owaroundmovingrigidbodies,Comput.MethodAppl.Mech.Engrg.151(1998)181–194.
[9]D.Goldstein,R.Handler,L.Sirovich,Modelingano-slip owboundarywithanexternalforce eld,put.Phys.105(1993)354–366.
[10]P.M.Gresho,Incompressible uiddynamics:fundamentalformula-tionissues,Annu.Rev.FluidMech.23(1991)413–453.
[11]C.A.Hall,NumericalsolutionofNavier–Stokesproblemsbythedual
variablemethod,SIAMJ.Alg.Disc.Methods6(2)(1985)220–236.
[12]F.Q.Hu,OnabsorbingboundaryconditionsforlinearizedEuler
equationsbyaperfectlymatchedlayer,put.Phys.129(1)(1996)201–219.
[13]J.C.R.Hunt,A.A.Wray,P.Moin,Eddies,stream,andconvergence
zonesinturbulent ows,CenterforTurbulenceResearch,Rep.CTR-S88,1988.
[14]D.S.Pradeep,F.Hussain,E ectsofboundaryconditioninnumerical
simulationsofvortexdynamics,J.FluidMech.516(2004)115–124.
[15]G.Jin,M.Braza,Anonre ectingoutletboundaryconditionfor
incompressibleunsteadyNavier–Stokescalculations,put.Phys.107(1993)239–253.
[16]i,C.S.Peskin,Animmersedboundarymethodwithformal
second-orderaccuracyandreducednumericalviscosity,put.Phys.160(2000)705–719.
[17]D.K.Lilly,Onthecomputationalstabilityofnumericalsolutionsof
time-dependentnon-lineargeophysical uiddynamicsproblems,Mon.Wea.Rev.93(1)(1965)11–26.
[18]M.N.Linnick,H.F.Fasel,Ahigh-orderimmersedinterfacemethod
forsimulatingunsteadyincompressible owsonirregulardomains,put.Phys.204(2005)157–192.
[19]W.K.Liu,Y.Liu,D.Farrell,L.Zhang,X.S.Wang,Y.Fukui,N.
Patankar,Y.Zhang,C.Bajaj,J.Lee,J.Hong,X.Chen,H.Hsu,Immersed niteelementmethodanditsapplicationstobiologicalsystems,Comput.MethodAppl.Mech.Engrg.195(2006)1722–1749.
[20]R.Mittal,G.Iaccarino,Immersedboundarymethods,Annu.Rev.
FluidMech.37(2005)239–261.
[21]J.Mohd-Yusof,Combinedimmersed-boundary/B-splinemethodsfor
simulationsof owincomplexgeometries,CenterforTurbulenceResearch,AnnualResearchBriefs,1997,pp.317–327.
[22]Y.Mori,C.S.Peskin,Implicitsecondorderimmersedboundary
methodswithboundarymass,Comput.MethodsAppl.Mech.Engrg.197(25–28)(2008)2049–2067.
[23]Y.Morinishi,T.S.Lund,O.V.Vasilyev,P.Moin,Fullyconservative
higherorder nitedi erenceschemesforincompressible ow,put.Phys.143(1998)90–124.
[24]E.P.Newren,A.L.Fogelson,R.D.Guy,R.M.Kirby,Uncondition-allystablediscretizationsoftheimmersedboundaryequations,put.Phys.222(2007)702–719.
[25]M.A.Ol’shanskii,V.M.Staroverov,Onsimulationofout ow
boundaryconditionsin nitedi erencecalculationsforincompress-ible uid,Int.J.Numer.MethodsFluid33(2000)499–534.
[26]B.Perot,Conservationpropertiesofunstructuredstaggeredmesh
schemes,put.Phys.159(2000)58–89.
[27]J.B.Perot,Ananalysisofthefractionalstepmethod,put.
Phys.108(1993)51–58.
[28]C.S.Peskin,Flowpatternsaroundheartvalves:anumericalmethod,
put.Phys.10(1972)252–271.
[29]C.S.Peskin,Theimmersedboundarymethod,ActaNumer.11(2002)
479–517.
[30]W.H.Press,S.A.Teukolsky,W.T.Vetterling,B.P.Flannery,
NumericalRecipesinFORTRAN:TheArtofScienti cComputing,seconded.,CambridgeUniversityPress,1992.
[31]S.C.Rennich,S.K.Lele,Numericalmethodforincompressible
vortical owswithtwounboundeddirections,put.Phys.137(1997)101–129.
[32]L.F.Rossi,Mergingcomputationalelementsinvortexsimulations,
put.18(4)(1997)1014–1027.
[33]R.L.Sani,P.M.Gresho,Re
´sume´andremarksontheopenboundaryconditionminisymposium,Int.J.Numer.MethodsFluid18(1994)983–1008.
[34]D.Shiels,Simulationofcontrolledblu body owwithaviscous
vortexmethod,Ph.D.Thesis,CaliforniaInstituteofTechnology,1998.
[35]J.R.Shewchuk,Anintroductiontotheconjugategradientmethod
withouttheagonizingpain.Onlineathttp://www.cs.cmu.edu/~jrs/jrspapers.html(1994).