教学宝典
5.1 关于本节课教学指导思想
归纳推理是发现和获得知识的基本思维形式,拉普拉斯曾说:“发现真理的主要工具也是归纳和类比”.归纳思维在形成创新意识中具有特殊的重要的地位,归纳思维往往获得的是开拓性的创造(再创造).三角函数求值是三角函数中重要问题之一,诱导公式是解决此类问题的基本方法.教学过程中,通过问题设疑、多媒体动态演示等教学措施,创设问题情境,引导学生从特殊的、个别的属性,通过联想、类比、归纳出具有普遍的、一般的整体性质.体现了学生充分感受和理解知识的产生和发展过程,促使学生积极思维主动探索,勇于发现,敢于创新.通过从特殊到一般的归纳思维训练,学生主动地获得新的知识,并在获得知识的过程中,形成良好的思维品质,发展学生的思维能力.
5.2 关于教学过程的设计
1)重现已有相关知识,为学习新知识作好铺垫.
2)思维总是从问题开始的,在sin1290°的求值过程中,从已知到未知,引发新的问题,营造氛围,引起学生学习需要和学习兴趣,激发学生的求知欲.
3)数学的思想方法是数学素质的核心,由sin210°的求值过程,把未知转化为已知,引导学生发现推导诱导公式的方法和途径,领会数学的归纳转化思想方法.
4)通过多媒体直观动态的演示,从特殊到一般完成所有情况的分类,引导学生联想,进行问题类比、方法迁移、归纳推理出具有普遍性的结论,形成公式,进行归纳思维训练.
5)通过分析诱导公式的结构特征,强化对诱导公式的理解和记忆,深刻领会诱导公式的内涵和实质.构建知识系统,培养学生的概括抽象能力.
6)通过基础训练题组和课外思考题的练习,掌握解决问题的方法,形成技能,提高学生分析问题和解决问题的能力.