手机版

三角函数的诱导公式 教案2(6)

发布时间:2021-06-06   来源:未知    
字号:

教学宝典

④sin(-30°)与sin30°的值关系如何?

教学设想 引导学生把求sin210°问题与sin(-30°)进行类比,实现方法迁移.通过微机动态演示,发现-30°与30°角的终边及其与单位圆交点关于x轴对称的关系.借助三角函数定义,寻找sin(-30°)与sin30°值的关系,达到转化为求0°~90°角三角函数的值的目的.

5)导入新问题:对于任意角α,sinα与sin(-α)的关系如何呢?试说出你的猜想?

6)引导学生观察演示(四)并思考下列问题:(设α为任意角)

①α与(-α)角的终边位置关系如何?(关于x轴对称)

②设α与(-α)角的终边分别交单位圆于点P,P',则点P与P'位置关系如何?(关于x轴对称)

③设点P(x,y),则点P'的坐标怎样表示?[P'(x,-y)] ④sinα与sin(-α),cosα与cos(-α)关系如何?

⑤tanα与tan(-α),cotα与cot(-α)的关系如何?

7)学生分组讨论,尝试推导公式,教师巡视,及时反馈、矫正、讲评.

8)板书诱导公式

sin(-α)=-sinα,cos(-α)=cosα.

三角函数的诱导公式 教案2(6).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)