We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group % symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncom
rangesinD′.Theuncertaintyrelationimpliedminimalnonzerouncertaintiesinthepositionsandmomenta.
Nowiftherewasavλ∈D′thatiseigenvectore.g.ofx:
x.vλ=λvλ
onewouldthenofcoursehave
( x)2= vλ|(x vλ,x.vλ )2|vλ =0(53)(52)
whichwouldbeacontradiction.Wethusconcludethatthereisnodomainonwhichxandparesymmetricandhaveeigenvectors.Letusnowstudythefunctionalanalysisofxinmoredetail,theanalysisforpiscompletelyanalogous.
4.1Theoperatorsx,x andx
WestartbechoosingforxthedomainDx:=D(the nitelinearcombinationsofthevectors(a )r|0 withr=0,1,2,...),onwhichxandpareobviouslysymmetricandhavetheirimageinDx.WecanthusalreadyconcludefromabovethatxhasnoeigenvectorsinDx.Indeed,theeigenvalueproblem
x.vλ=λvλwithvλ=∞ fr(λ)(a )r
[r]q!|0 (54)
r=0
canbesolvedforallcomplexλ,butfromtherecursionformulathatweobtainforthecoe cientsfr(λ)ofvλitisclearthatin nitelymanyofthemarenonzero,thusvλ∈Dx:Explicitely,intheorthonormalisedbasis
er:=
thematrixelementsofxare
xrs=L( (a )r[r]q!|0 (55)
[s]qδr+1,s)(56)
andtherecursionformulathatweobtainforthecoe cientsfr(λ)ofthevectorvλthusreads: fr L