手机版

Uncertainty Relation in Quantum Mechanics with Quantum Group(2)

发布时间:2021-06-06   来源:未知    
字号:

We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group % symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncom

couldbeinsuchawaythatnotonlygravityisquantisedbutalsothatgravitywouldfeedbacktoquantumtheorybymodifyingthecanonicalcommutationrelations.Wewillhoweverforthepresentcon neourselvestothecaseofnonrelativis-ticquantummechanics.Thestudyofsomee ectsofnoncommutativegeometryinquantummechanicswasoutlinedin[5].Herewecoveramoregeneralcaseandgivedetailsandproofs.Ourresultswillsupporttheideathatnoncommutativegeometryhasindeedthepotentialtoregulariseultravioletandeveninfrareddivergenciesinquantum eldtheories.

1.1Heisenbergalgebra

InourapproachwegeneratetheHeisenbergalgebraofndegreesoffreedombymu-tuallyadjointoperatorsaranda r,(r=1,...,n).ThisproceedingwillautomaticallysupplyuswithaHilbert(Fock-)spacerepresentationoftheHeisenbergalgebra.Inusualquantummechanicsthisisofcourseequivalenttotheuseofthehermiteangeneratorsxrandpr,(whicharethewellknownlinearcombinationsoftheformerones)andtherepresentatione.g.ontheHilbertspaceofsquareintegrablefunctions.WewillusethequantumgroupSUq(n)asa’symmetry’groupfornontrivialcommutationrelationsi.e.aslinearquantumcanonicaltransformations.TechnicallytheHeisenbergalgebraisaFunSUq(n)-comodulealgebra[6].ArbitraryHamiltonianscanbestudiedwithinourframeworkandtheynotnecessarilyhavethissymmetry.ExplicitelythecommutationrelationsofthefollowinggeneralisedbosonicHeisen-bergalgebraareconservedundertheactionofthequantumgroupSUq(n):

aiaj qajai=0

a iaj qajai=0

aia j qajai=0forforfor

2i<ji>ji=j j<i(1)(2)(3)a jaj(4)aia i q2a iai=1+(q 1)

Hereirunsfrom1tonandqisreal.Theserelationsandtheirfermioniccounter-partwerederivedintheR-matrixapproachin[6].AsIlearnedlatertheyhad rstappearedinadi erentapproach[7].Theyarerelatedtothedi erentialcalculusonquantumplanes[8]andcanalsobeunderstoodasabraidedsemidirectproductconstruction[9].Comparealsowiththedi erentapproachese.g.in[10,11,12,13].Althoughquantumgroupsdoingeneralhavemorethanonefreeparameter,nofur-therparametersenterintheabovecommutationrelations[14,15].

1.2BargmannFockrepresentation

0|0 =1andai|0 =0fori=1,...,n

2AsusualtheFockspaceisconstructedfromavector|0 with

Uncertainty Relation in Quantum Mechanics with Quantum Group(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)