We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group % symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncom
achievedifthecommutationrelationscomeoutintheform[x,p]=ih¯+f(q,x,p)i.e.withthecentraltermbeingih¯withoutanyq-factors.Theuncertaintyrelationh¯ x p≥ f(q,x,p) shouldthenreducetotheusualrelationswhere f is2negligible.Theactualcommutationrelationscomeoutasfollows:
2.1Commutationrelations
WeexpressthecommutationrelationsEqs.4intermsofthex’sandp’s:
[x4iLrKrr,pr]=
x2s
q2+1s≤r4Ks2 1
t<r
2s
4L2+p
s
2
q2+1 ih¯LrKq 1
rLtKt
SolvingthisequationwegetrelationsbetweentheLrandKr:
Lh¯rKr:=2 r
Fromthisfollowsβrimmediately:
β 1 1
r=4Lq2
rKr2 r
Thusthecommutationrelationstake nalform:
[xr,pr]=ih¯+ih¯(q2 1) s
s q2+1≤r4L2+p2
s
q 1
Kr(11)(12)(13)