We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group % symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncom
UsingEqs.1-4one ndsthematrixelements:
xjr1,...,rn,s1,...,sn=Lj( [sj]qδrj+1,sj)·
(70)
(71)
(72)qr1+...+rj 1δr1,s1·...·δrj 1,sj 1δrj+1,sj+1·...·δrn,snTheeigenvalueproblemxjvλ=λvλisthensolvedbyallvλ=∞ sj=0fs1,...,sj,...,sn(λ)es1,...,en
withcoe cientsthatobeytherecursionformula(allsiarekept xedexceptsj):
L q (r1+...+rj 1)fs1,...,sj,...,sn(λ)