We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group % symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncom
Onethenobtainsforthescalarproduct:
0|(an)
with
[r]q!:=[1]q·[2]q·[3]q·...·[r]qand[p]q:=rn·...·(a1)r1r1(a 1)·...·rn(a n)|0 =i=1n [ri]q!q2p 1(5)
unlikeusingasusualordinarycomplexintegrationforthebosoniccaseandBerezinintegrationforthefermioniccase2weakeningthisrestriction,onemaygeneralisabletheansatz
Eqs.71
3