手机版

Uncertainty Relation in Quantum Mechanics with Quantum Group(11)

发布时间:2021-06-06   来源:未知    
字号:

We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group % symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncom

Toseethiswerewritetherecursionformulainmatrixform:

fr+1

fr

Theiterationmatrixsimpli esforlargerto

=1[r]q[r+1]q Lλ2L [r 1]q[r+1]q fr 1fr 2 (59)(60)

[r 1]q/[r]q

1/|q|0

0 1/|q| andeventuallygoeslike(61)

Sinceq2>1wecanthusapplythequotientcriterium(behaviourlikeageometricalseries)toconcludethat

r=0∞ (λ)fr(λ)<∞fr(62)

i.e.thatallvλarenormalisable3.TheyareobviouslycontainedinDx andarethuseigenvectorsofx .Sincetherearenonrealeigenvaluesweconcludethatx isnotsymmetric.Thisallowsitseigenvectorstobelinearilydependend.TheyareactuallyingenerallinearilydependendoneachothersincetheHilbertspaceHisseperableandthereisanuncountablein nitenumberofeigenvectorsvλ.Ananalyticexpressionforthescalarproductoftwonormalisedeigenvectors v λ,v λ′ hasnotyetbeenworkedout.However,thenumericalapproximationconvergesasquicklyasageometricalseries.

Theoperatorx ismuchbetterbehavedthanx ,sinceitisclosedandsymmetric,aseverybi-adjointofadenslyde nedsymmetricoperator.

Itsdomain

Dx ={v∈H| w∈H a∈Dx : v,x .a = w,a }(63)

isinbetweenthoseofxandx :Dx Dx Dx anditdoesnotcontainanyeigenvectorsvλ.

4.2Self-adjointextensions

Wenowapplythestandardprocedure,seee.g.[18,19]4,forcheckingforself-adjointextensionsofclosedsymmetricoperators:

Uncertainty Relation in Quantum Mechanics with Quantum Group(11).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)