非线性代数方程组的解法离不开迭代,因此,潮流计算方法首先要求它是能可靠的收敛,并给出正确答案。随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的。这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法。知道现在潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。
通过几十年的发展,潮流算法日趋成熟。近几年,对潮流算法的研究仍然是如何改善传统的潮流算法,即高斯-塞德尔法、牛顿法和快速解耦法。牛顿法,由于其在求解非线性潮流方程时采用的是逐次线性化的方法,为了进一步提高算法的收敛性和计算速度,人们考虑采用将泰勒级数的高阶项或非线性项也考虑进来,于是产生了二阶潮流算法。后来又提出了根据直角坐标形式的潮流方程是一个二次代数方程的特点,提出了采用直角坐标的保留非线性快速潮流算法。岩本伸一等提出了一种保留非线性的快速潮流计算法,但用的是指教坐标系,因而没法利用P-Q解耦。为了更有利于大电网的潮流计算,将此原理推广用于P-Q解耦。这样,既利用了保留非线性的快速算法,在迭代中使用常数雅克比矩阵,又保留了P-Q解耦的优点。另外,为了优化系统的运行,从所有以上的可行潮流解中挑选出满足一定指标要求的一个最佳方案就是最优潮流问题。最优潮流是一种同时考虑经济性和安全性的电力网络分析优化问题。
本毕业设计主要工作
本文致力于研究分析电力网络的运行情况。结合电力系统潮流计算的特点,设计一款基于matlab的潮流计算软件,该软件能够进行电力系统潮流计算并且具有一定的辅助分析功能。具体来讲要完成如下工作:
1:研究电力系统潮流计算的基本原理和基本方法。 2:完成电力系统网络的数学建模。
3:利用matlab的M语言进行编程实现电力系统的潮流计算。 4:利用matlab GUI 完成软件的登陆界面及主界面的制作
5:利用该软件进行某电力系统的潮流计算,并对计算结果进行分析以验证该软件的可用性。