同样我们利用电流差分替代式(5-24)中的微分,将连续的微分方程化为离散的差分方程,kT时刻式(5-24)左右两边的差值具有以下数字形式:
1
ε1AB k =ub1 k ua1 k +u′a2 k u′b2 k +iLa1 k r1+ω
xiLa1 k+1 iLa1 k 1
2T
′
i′a2 k i′b2 k r2 ′ (m′23 m13)
′′′′x′2[ia2 k+1 ib2(k+1)] [ia2 k 1 ib2(k 1)]
w2T
imab k+1 imab k 1
2T
(5-28)
x1iLb1 k+1 iLb1 k 1
ε1BC k =uc1 k ub1 k +u′b2 k u′c2 k +iLb1 k r1+
′
i′b2 k i′c2 k r2
′′′′x′2[ib2 k+1 ic2(k+1)] [ib2 k 1 ic2(k 1)]
w2T
′
(m′23 m13)
imbc k+1 imbc k 1
2T
(5-29)
x1iLc1 k+1 iLc1 k 1
ε1CA k =ua1 k uc1 k +u′c2 k u′a2 k +iLc1 k r1+
′
i′c2 k i′a2 k r2
′′′′x′2[ic2 k+1 ia2(k+1)] [ic2 k 1 ia2(k 1)]
w2T
′
(m′23 m13)
imca k+1 imca k 1
2T
(5-30)
′′ ε2AB k =u′a2 k u′b2 k +u′b3 k u′a3 k i′a2 k i′b2 k r2+ i′a3 k i′b3 k r3
′′ x2[ia2k+1 i′b2(k+1)] [i′a2 k 1 i′b2(k 1)]
′′ x3[ia3k+1 i′b3(k+1)] [i′a3 k 1 i′b3(k 1)]+′′
(m12 m13)
imab k+1 imab k 1
2T
(5-31)
′′
ε2BC k =u′b2 k u′c2 k +u′c3 k u′b3 k i′b2 k i′c2 k r2+ i′b3 k i′c3 k r3
′′ x2[ib2k+1 i′c2(k+1)] [i′b2 k 1 i′c2(k 1)]
′′ x3[ib3k+1 i′c3(k+1)] [i′b3 k 1 i′c3(k 1)]+′′
(m12 m13)
imbc k+1 imbc k 1
2T
(5-32)
′′
ε2CA k =u′c2 k u′a2 k +u′a3 k u′c3 k i′c2 k i′a2 k r2+ i′c3 k i′a3 k r3
′′ x2[ic2k+1 i′a2(k+1)] [i′c2 k 1 i′a2(k 1)]
′′ x3[ic3k+1 i′a3(k+1)] [i′c3 k 1 i′a3(k 1)]+′′
(m12 m13)
imca k+1 imca k 1
2T
(5-33)
式中 ε1AB k 、 ε1BC k 、ε1CA k 、 ε2AB k 、 ε2BC k 、 ε2CA k 分别代表式