We consider generalised Scherk Schwarz reductions of supergravity and superstring theories with twists by electromagnetic dualities that are symmetries of the equations of motion but not of the action, such as the S-duality of D=4, N=4 super-Yang-Mills cou
thelagrangian(3.46)canbewrittenas
L=
strengthFnare
dFn=0
dGn=d( e φ Fn χFn)=0
whichcanbecombinedas
dHn=0
whereHnistheSL(2,IR)doublet
Hn= 12F∧G(3.48)whereKisasin(2.15).TheBianchiidentityandtheequationofmotionforthen-form eld(3.49)(3.50) Fn
Gn.(3.51)
The eldequationsaremanifestlySL(2,R)invariant,buttheF∧Gterminthelagrangian(3.48)isnotinvariant.However,aninvariantlagrangiancanbeconstructedasin[21]ifthe
nsothatGn=dA n,which eldequationdGn=0issolvedbyintroducingadualpotentialA
icanbecombinedwithAntoformanSL(2,R)doublet,with eldstrengthsHngivenby
Hn= dAn ndA .(3.52)
ThenthenaturalSL(2,IR)invariantlagrangianis
L′=1
4ijHnKij∧ Hn.(3.53)
whichisoftheformconsideredintheprevioussection.
n 1areindependent elds,sothatthenumberofn 1Forthisaction,bothAn 1andA
formdegreesoffreedomhasbeendoubled.Tohalvethemagain,forevennthisactioncanbesupplementedbytheSL(2,R)covariantconstraint[21]
ijHn=Jij Hn(3.54)
whereJistheSL(2,IR)matrix
Jij= ikKkj.
Here istheSL(2,IR)invariantmatrix
= (3.55)01
10
.(3.56)