We consider generalised Scherk Schwarz reductions of supergravity and superstring theories with twists by electromagnetic dualities that are symmetries of the equations of motion but not of the action, such as the S-duality of D=4, N=4 super-Yang-Mills cou
5.1Reductionofd=8MaximalSupergravity
TheN=2d=8maximalsupergravity[2]canbeobtainedfrom11-dimensionalsuper-gravitybytoroidalcompacti cationandhas eldequationsinvariantunderthedualitygroupSL(2,IR)×SL(3,IR).Thebosonic eldsconsistofametric,a3-formgauge eldA3,6vec-tor eldsinthe(2,3)representationofSL(2,IR)×SL(3,IR),32-formgauge eldsinthe(1,3)representationofSL(2,IR)×SL(3,IR),andscalarstakingvaluesinthecosetspace
3SL(3,IR)/SO(3)×SL(2,IR)/SO(2).Thegauge eldA3combineswiththedualgauge eldA
toformadoubletunderSL(2,IR)andSL(3,IR)isasymmetryoftheactionwhereasSL(2,IR)isasymmetryofthe eldequationsonly,asitactsthroughelectro-magneticdualityonthe3-formgauge elds.
ThereisaconsistenttruncationofthistheorywhereonlytheSL(3,IR)singletsarekeptandalltheother eldsaresettozero[29].Thenthetruncatedtheoryconsistsofametric,a3-formgauge eldandscalarstakingvaluesinSL(2,IR)/SO(2),withanSL(2,IR)S-dualitysymmetry.Thistruncatedtheoryispreciselyoftheform(3.46)withn=4andthetwistedreductionwithanSL(2,R)twistgivesthreedistinctreducedtheoriescorrespondingtothethreeconjugacyclasses,withlagrangians(4.86),(4.87)or(4.88).
Thiscanbeextendedtothefulltheory,asthereductionofthe eldsthatarenotSL(3,IR)singletsisastandardScherk-Schwarzreduction.TherearesomecomplicationsresultingfromtheChern-Simonsinteractionsofthed=8theory,andwewillnotpresentthefullresultshere.Therearethreedistinctclassicaltheories,whilethedistinctquantumtheoriescorrespondtothedistinctSL(2,Z)conjugacyclasses.
5.2Reductionofd=4,N=4Supergravity
N=4supergravitycoupledtopvectormultipletshasanO(6,p)symmetryoftheactionandanSL(2,IR)S-dualitysymmetryoftheequationsofmotion.Thevector eldsAI1(I=1,2,...,6+p)
Iareinthefundamental6+prepresentationofO(6,p)andcombinewithdualpotentialsA1
toform6+pdoubletsAmI(m=1,2)transforminginthe(2,6+p)ofSL(2,IR)×O(6,p).1
ThescalarstakevaluesinthecosetSL(2,IR)/SO(2)×O(6,22)/O(6)×O(22).ThescalarsinO(6,22)/O(6)×O(22)canberepresentedbyacosetspacemetricNIJwhilethe2scalarsφ,χinSL(2,IR)/SO(2)canberepresentedbyacosetspacemetricKmnwhichisofthesameformas(2.15).
Thelagrangianforthebosonicsectorcanbewrittenas[20,30,31]:
L=R 1+
214tr(dN∧ dN 1) 1(5.89)
IJχF2LIJ∧F2