手机版

Compactifications with S-Duality Twists(2)

发布时间:2021-06-08   来源:未知    
字号:

We consider generalised Scherk Schwarz reductions of supergravity and superstring theories with twists by electromagnetic dualities that are symmetries of the equations of motion but not of the action, such as the S-duality of D=4, N=4 super-Yang-Mills cou

1Introduction

Twistedtoroidalcompacti cationsorScherk-Schwarzreductionsareausefulwayofintroducingmassesintosupergravityandstringcompacti cations,generatingapotentialforthescalar elds

[1-19].AtheoryinD+1dimensionswithglobalsymmetryGcanbecompacti edonacirclewith eldsnotperiodicbutwithaGmonodromyaroundthecircle,andthemonodromyintroducesmassesintothetheoryandbreakssomeofthesymmetry.Thepurposehereistogeneralisesuchcompacti cationstothecaseinwhichGisasymmetryoftheequationsofmotiononly,notoftheaction;weshallrefertosuchsymmetrieshereasS-dualities.AstandardexampleisS-dualityin4-dimensions.Theheteroticstringcompacti edtofourdimensionshasaclassicalSL(2,R)symmetrywhichactsthroughelectromagneticdualitytransformationsandsoisonlyasymmetryoftheequationsofmotion.Inthiscase,weconsideracirclereductiontothreedimensionswithamonodromyinSL(2,R).Inthequantumtheory,theSL(2,R)symmetryisbrokentoSL(2,Z)[20]andinthatcasethemonodromymustbeinSL(2,Z)[6].Wegeneralisethistootherdimensions,anddiscussexamplesinD=3,5and7dimensions.

ConsideraD+1dimensionalsupergravitywithaglobalsymmetryG.Anelementgofthesymmetrygroupactsonageneric eldψasψ→g[ψ].ConsidernowadimensionalreductionofthetheorytoDdimensionsonacircleofradiusRwithaperiodiccoordinatey~y+1.Inthetwistedreduction,the eldsarenotindependentoftheinternalcoordinatebutarechosentohaveaspeci cdependenceonthecirclecoordinateythroughtheansatz

ψ(xµ,y)=g(y)[ψ(xµ)](1.1)

forsomey-dependentgroupelementg(y)[6].Animportantrestrictionong(y)isthatthereducedtheoryinDdimensionsshouldbeindependentofy.Thisisachievedbychoosing

g(y)=exp(My)(1.2)

forsomeLie-algebraelementM.Themapg(y)isnotperiodicaroundthecircle,buthasamonodromy

M(g)=expM(1.3)

iManysupergravitytheoriesinD+1=2ndimensionshaveasetofnform eldstrengthsHn

wherei=1,...,rlabelsthepotentials,whichtypicallysatisfyageneralisedself-dualityequationoftheform

ijHn=Qij(φ) Hn(1.4)

whereQijisamatrixdependingonthescalar eldsφand istheHodgedualinD+1dimensions[21].Foranyn,consistencyrequiresthat(Qij(φ) )2=1,sothatif( )2= 1,asin

Compactifications with S-Duality Twists(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)