We consider generalised Scherk Schwarz reductions of supergravity and superstring theories with twists by electromagnetic dualities that are symmetries of the equations of motion but not of the action, such as the S-duality of D=4, N=4 super-Yang-Mills cou
From(2.35)and(2.37)itfollowsthatMabisasymmetricmatrixifnisevenandantisymmetricifnisodd:
Mab=( 1)nMba.
(2.38)Letthedimensionofker(M)bel.NowthematrixMabcanbebroughtintothecanonicalform
Mab=
′′00′′0mαβ(2.39)wheremαβisaninvertible(r l)×(r l)matrixwhichisdiagonalifnisevenandskew-diagonalifnisodd.Herewehavesplittheindicesa→(α,α′)whereαrunsfrom1tolandα′runsfroml+1tor.Similarlythegauge eldsAcanbewrittenintheblockform
A=
Performingthegaugetransformation
′¯(n 1)α′+( 1)n 1(m 1)α′β′DAβ¯(n 1)α′→AAn 2 A′Aαα (2.40)(2.41)
¯(n 1)α′becomemassive,havingeatenther l eldsAα′,whileoneseesthatther l eldsAn 2¯Aαn 2andA(n 1)αbothremaininthetheoryasmasslessgauge elds,withlofeach.The eld
strengthsforthe(n 2)-form eldsin(2.36)become
α′nα′β′¯Hn=( 1)mA(n 1)β′, 1ααHn 1=DAn 2(2.42)
andhencetheterm(2.30)canbewrittenas
Lb=
112′′¯(n)β′¯(n)α′∧ He 2(n 1)α δαβH(2.43)
2′′¯(n 1)β′.¯(n 1)α′∧ Ae2(D n)α (mTm)αβA
Wehavechosenthenormalisationof sothat ac bdδcd=δab.
Thegaugegroup,thecouplingsandthescalarpotentialoftheD-dimensionaltheoryfoundabovearegivenexplicitlyintermsofthemassmatrixM,andtwotheoriesaredistinctifthemonodromiesareindistinctG-conjugacyclasses.ForthecaseG=SL(2,R)therearethreeconjugacyclasses,thehyperbolic,ellipticandparabolicconjugacyclassesandsotherearethreedistinctreductions[6].Thehyperbolic,ellipticandparabolicmonodromymatricesandmassmatricescanbetakentobe:
Mh= e
0m0e m
,Me=
cosmsinm
sinmcosm ,Mp=
Mp= 1m01 .(2.44)(2.45)Mh=m0
0 m,Me=0m
m0
,0m00.