We consider generalised Scherk Schwarz reductions of supergravity and superstring theories with twists by electromagnetic dualities that are symmetries of the equations of motion but not of the action, such as the S-duality of D=4, N=4 super-Yang-Mills cou
Lorentzianspaceofdimension4m,thenQ2=
andQisaproductstructure.Inthe
itheorieswewillconsider,theHntransforminanr-dimensionalrepresentationofarigidduality
groupG.Ind=4,N=8supergravity,therearer=562-form eldstrengthstransformingasa56ofthedualitygroupG=E7[22,23].Thesesplitinto28 eldstrengthsF=dAand
= F+...,withQacomplexstructureonR56.Ind=6,N=828dual eldstrengthsF
supergravity,thereare53-form eldstrengthswhichsplitinto5self-dualonesand5anti-selfdualones,andthese10transformasa10ofG=SO(5,5)[24].The103-form eldstrengths iwithi=1,...,10,satisfy(anti)self-dualityconstraintsoftheform(1.4)withQrelatedtoHn
theSO(5,5)-invariantmetric.Ind=8maximalsupergravity,thereisa3-formpotential,andits eldstrengthanditsdualcombineintoanSL(2,R)doublet,satisfyingaconstraintoftheform(1.4)withQ=iσ2.
OurmaininteresthereisinreductionsinwhichthemonodromyM∈Gisasymmetryof
iviatransformationstheequationsofmotionbutnottheaction,actingonthe eldstrengthsHn
involvingHodgeorelectromagneticdualities,sothattheycannotberealisedlocallyonthefundamentaln 1formpotentials.We ndthat(inthecaseinwhichMisinvertible)the eld
isatisfyingtheconstraint(1.4)giverisetorn 1formpotentialsAiin2n 1strengthsHnn 1
dimensionssatisfyingmassiveself-dualityconstraintsoftheform
An 1DAn 1=M(1.5)
whereDisagauge-covariantexteriorderivative, isnowtheHodgedualinDdimensions
∝QM.Suchodd-dimensionalself-dualityconditionswere rstconsideredandthematrixM
in[26]andoftenoccurinodd-dimensionalgaugedsupergravitytheories,andfollowfromaChern-Simonsactionwithmasstermoftheform
ijAi∧ AjL=PijAi∧DAj+M(1.6)
=PM andPijisasuitablychosenconstantmatrix.InthegeneralcaseinwhichMwhereM
isnotinvertible,someofthegauge eldsremainmassless.
Indimensionallyreducingatheorywithatwistthatisasymmetryoftheequationsofmotionandnotoftheaction,oneneedstoreducetheequationsofmotion,nottheaction.However,forthecasesofinterestherethereisadoubledformalism[21]inwhichdualpotentials n 1areintroducedforeachn 1formpotentialAn 1,inwhichthedualitysymmetrybecomesA
],whichissupplementedbyaduality-invariantconstraintthatasymmetryoftheactionS[A,A
intermsofA.ThisdoubledactionandconstraintcanthenbecouldbeusedtoeliminateA
dimensionallyreducedinthestandardwaywithatwistbythedualitysymmetry.Thisgreatlysimpli esthecalculations.