手机版

Topic segmentation with an aspect hidden Markov model(14)

发布时间:2021-06-08   来源:未知    
字号:

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

11

Figure7:Windowwidthvs.CoAPfortheHMMandAHMMintheNYTcorpusschemedescribedinsection4.2,wordsinthebeginningofthewindowareweightedmoreheavilythanwordstowardstheendofthewindow.Therefore,asthewindowsizeincreases,morewordsmakelessimpactontheobservationdistributionandthesegmenterdoesnotperformaswell.

TheHMMdoeswellonlargewindowssinceallwordsarecountedequally.How-ever,thisincreaseinperformanceisattheexpenseoflowsegmentationgranularity.WhiletheHMMperformsbetterthantheAHMMforlargewindows,itneverattainstheperformanceoftheAHMMinsmallwindows.Typically,theAHMMreachespeakperformanceatawindowsizeof10-15words.TheHMMbeginstoperformbetterthantheAHMMataround100words.

6Conclusionsandfuturework

Inthispaper,wehaveintroducedanewapproachtotextsegmentationusingauniqueprobabilisticmodelthatcombinesanaspectmodelwithanHMM.Thisisauni edframeworkwithinwhichwelearnbothdocumentclustersfortrainingandobservationprobabilitiesfornewsegmentations.TheAHMMdoeswellwithsmallwindowsofwordsallowingforamoreprecisesegmentationthanwiththeHMM.

Wehaveexperimentedwiththissystemonnoisytextsourcesproducedbyaspeechrecognitionsystem.Sinceourmodelispurelystatistical,wecansegmentthisoutputandaccuratelyhypothesizetopictransitionpoints.OurresultsontranscriptsproducedbytheSPEECHBOTsystemarequiteencouraging.

Futureworkinthisareahasseveraldirections.First,wewouldliketoincorporatesegmentationintotheSPEECHBOTIRframeworkinaprincipledwayandmeasureitssuccess.Second,wewouldliketousethetopiclabelstocategorizethecorpusofsegmentsandfurtherimproveaudiobrowsingandretrieval.Finally,wewouldliketo

Topic segmentation with an aspect hidden Markov model(14).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)