We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words
11
Figure7:Windowwidthvs.CoAPfortheHMMandAHMMintheNYTcorpusschemedescribedinsection4.2,wordsinthebeginningofthewindowareweightedmoreheavilythanwordstowardstheendofthewindow.Therefore,asthewindowsizeincreases,morewordsmakelessimpactontheobservationdistributionandthesegmenterdoesnotperformaswell.
TheHMMdoeswellonlargewindowssinceallwordsarecountedequally.How-ever,thisincreaseinperformanceisattheexpenseoflowsegmentationgranularity.WhiletheHMMperformsbetterthantheAHMMforlargewindows,itneverattainstheperformanceoftheAHMMinsmallwindows.Typically,theAHMMreachespeakperformanceatawindowsizeof10-15words.TheHMMbeginstoperformbetterthantheAHMMataround100words.
6Conclusionsandfuturework
Inthispaper,wehaveintroducedanewapproachtotextsegmentationusingauniqueprobabilisticmodelthatcombinesanaspectmodelwithanHMM.Thisisauni edframeworkwithinwhichwelearnbothdocumentclustersfortrainingandobservationprobabilitiesfornewsegmentations.TheAHMMdoeswellwithsmallwindowsofwordsallowingforamoreprecisesegmentationthanwiththeHMM.
Wehaveexperimentedwiththissystemonnoisytextsourcesproducedbyaspeechrecognitionsystem.Sinceourmodelispurelystatistical,wecansegmentthisoutputandaccuratelyhypothesizetopictransitionpoints.OurresultsontranscriptsproducedbytheSPEECHBOTsystemarequiteencouraging.
Futureworkinthisareahasseveraldirections.First,wewouldliketoincorporatesegmentationintotheSPEECHBOTIRframeworkinaprincipledwayandmeasureitssuccess.Second,wewouldliketousethetopiclabelstocategorizethecorpusofsegmentsandfurtherimproveaudiobrowsingandretrieval.Finally,wewouldliketo