We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words
44ASPECTHMMSEGMENTATION
,maximizetheloglikelihoodofthetrainingdatawithrespecttotheparameters
,and.TheE-stepis
whereisthenumberoftimeswordappearsindocument.
Toavoidover ttingthetrainingdata,weusetemperedEMasdescribedin[5].Essentially,weholdoutaportionofourtrainingdataforcrossvalidationpurposesaftertheE-step.Whentheperformancedecreasesonthehold-outdata,wereduceaparameterwhichtemperstheeffectofthenextM-stepontheparametersofthemodel.InthecaseofasegmentingAHMM,wecrossvalidatebycheckingthesegmentationaccuracyonaheldoutsetoftranscriptsasmeasuredbytheCoAP(seesection5.3).Westoptrainingwhenreducingnolongerimprovesperformanceonthesegmentationofthehold-outtrainingdata.
4.2TheaspectHMM
ThesegmentingAHMMisanHMMforwhichthehiddentopicstateistherandomvariableinatrainedaspectmodel.Thisisdepictedin gure2.Generatively,theAHMMworksinexactlythesamewayastheHMMexceptthewordsfromtheselectedhiddenfactoraregeneratedviatheaspectmodelratherthanindependentlygenerated.TotrainanAHMM,wetrainanaspectmodelonasetoftrainingsegmentsasdescribedinsection4.1.Weclusterthetrainingsegmentsbytheparameter.
cluster
Finally,wecomputetransitionprobabilitiesbetweenclustersandinitialprobabilitiesofeachcluster.
Notethattheaspectmodeldoesnotrepresentclustersinthewaythatwecomputethem.Eachisrepresentedby,aprobabilityforeachlatentfactor.Thereisnotheoreticalreasonthatthefactorwithmaximumprobabilityshouldindicateacluster