We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words
3
ThismodelisaneffectivesegmentationframeworkonbothcleanandASRtext.However,itsuffersfromthenaiveBayesassumptionthatthewordswithineachobser-vationaremutuallyindependentgivenatopic.
Asgetslarge,thisassumptionworkswellforcomputing.However,thelargerbecomes,thelessprecisetheresultingsegmentationwillbesincethemodelcanonlyhypothesizetopicbreaksbetweensetsofwords.Thewindow(i.e.)mustbelargeenoughtogiveanaccurateestimateofwhilesmallenoughtodetectasegmentationpointwithgoodgranularity.
4AspectHMMSegmentation
AsegmentingaspectHMM(AHMM)isahiddenMarkovmodelinwhicheachhiddenstateisaninstanceofthelatentvariableinanembeddedaspectmodel.Thisaspectmodeldeterminesboththeobservationemissionprobabilitiesandtrainingsegmentclustersto ndthetransitionprobabilities.AsinthesegmentingHMM,eachobserva-tionisasetofwordsandweusetheViterbialgorithmto ndtopicbreaks.
4.1Theaspectmodelfordocumentsandwords
Inthissectionwesummarizetheaspectmodelasitappliestotext.Foradetaileddiscussion,see[5].
Theaspectmodelisafamilyofprobabilitydistributionsoverapairofdiscreterandomvariables.Intextdata,thispairconsistsofadocumentlabelandaword.Itisimportanttounderstandthatintheaspectmodel,adocumentisnotrepresentedasthesetofitswordsbutsimplyalabelwhichidenti esit.Itisassociatedwithitscorrespondingsetofwordsthrougheachdocument-wordpair.
Thismodelpositsthattheoccurrenceofadocumentandawordareindependentofeachothergivenatopicorfactor.Letdenoteasegmentfromapresegmentedcorpus,denoteaword,anddenoteatopic.Underthisindependenceassumption,thejointprobabilityofgeneratingaparticulartopic,word,andsegmentlabelis
Theparameterisalanguagemodelconditionedonthehiddenfactor.Theparameterisaprobabilitydistributionoverthetrainingsegmentlabels.Thedistributionisathepriordistributiononthehiddenfactor.
Givenacorpusofsegmentsandthewordswithinthosesegments,thetrainingdataforanaspectmodelisthesetofpairsforeachsegmentlabelandeachwordinthosesegments.WecanusetheExpectationMaximization(EM)algorithm[2]tolearnsuchamodelfromanuncategorizedcorpus.IntheE-step,wecomputetheposteriorprobabilityofthehiddenvariablegivenourcurrentmodel.IntheM-step,we