手机版

Topic segmentation with an aspect hidden Markov model(6)

发布时间:2021-06-08   来源:未知    
字号:

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

3

ThismodelisaneffectivesegmentationframeworkonbothcleanandASRtext.However,itsuffersfromthenaiveBayesassumptionthatthewordswithineachobser-vationaremutuallyindependentgivenatopic.

Asgetslarge,thisassumptionworkswellforcomputing.However,thelargerbecomes,thelessprecisetheresultingsegmentationwillbesincethemodelcanonlyhypothesizetopicbreaksbetweensetsofwords.Thewindow(i.e.)mustbelargeenoughtogiveanaccurateestimateofwhilesmallenoughtodetectasegmentationpointwithgoodgranularity.

4AspectHMMSegmentation

AsegmentingaspectHMM(AHMM)isahiddenMarkovmodelinwhicheachhiddenstateisaninstanceofthelatentvariableinanembeddedaspectmodel.Thisaspectmodeldeterminesboththeobservationemissionprobabilitiesandtrainingsegmentclustersto ndthetransitionprobabilities.AsinthesegmentingHMM,eachobserva-tionisasetofwordsandweusetheViterbialgorithmto ndtopicbreaks.

4.1Theaspectmodelfordocumentsandwords

Inthissectionwesummarizetheaspectmodelasitappliestotext.Foradetaileddiscussion,see[5].

Theaspectmodelisafamilyofprobabilitydistributionsoverapairofdiscreterandomvariables.Intextdata,thispairconsistsofadocumentlabelandaword.Itisimportanttounderstandthatintheaspectmodel,adocumentisnotrepresentedasthesetofitswordsbutsimplyalabelwhichidenti esit.Itisassociatedwithitscorrespondingsetofwordsthrougheachdocument-wordpair.

Thismodelpositsthattheoccurrenceofadocumentandawordareindependentofeachothergivenatopicorfactor.Letdenoteasegmentfromapresegmentedcorpus,denoteaword,anddenoteatopic.Underthisindependenceassumption,thejointprobabilityofgeneratingaparticulartopic,word,andsegmentlabelis

Theparameterisalanguagemodelconditionedonthehiddenfactor.Theparameterisaprobabilitydistributionoverthetrainingsegmentlabels.Thedistributionisathepriordistributiononthehiddenfactor.

Givenacorpusofsegmentsandthewordswithinthosesegments,thetrainingdataforanaspectmodelisthesetofpairsforeachsegmentlabelandeachwordinthosesegments.WecanusetheExpectationMaximization(EM)algorithm[2]tolearnsuchamodelfromanuncategorizedcorpus.IntheE-step,wecomputetheposteriorprobabilityofthehiddenvariablegivenourcurrentmodel.IntheM-step,we

Topic segmentation with an aspect hidden Markov model(6).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)