手机版

Topic segmentation with an aspect hidden Markov model(4)

发布时间:2021-06-08   来源:未知    
字号:

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

1

1Introduction

Intheclassicalinformationretrieval(IR)problem,ausersearchesinacorpusoftextfordocumentswhichsatisfyherinformationneeds.Thisframeworkassumesanotionofdocumenti.e.thatthecorpusisdividedintocohesivesetsofwordseachexpressingasmallnumberofinformationneeds.

Insomesearch-worthytextcorpora,suchasnewswirefeeds,televisionclosedcap-tions,orautomaticspeechrecognition(ASR)transcriptsofstreamingaudio,thereisnoexplicitrepresentationofadocument.Thereareimplicitdocumentbreaks(e.g.televisionshows,radiosegments)butnocleardemarcationsofwheretheyoccur.Seg-mentationisacriticalsubtaskoftheIRprobleminthesesituations.

Tothisend,weimplementedanovelprobabilisticmethodoftopicsegmentationwhichcombinesasegmentinghiddenMarkovmodel[6]andanaspectmodel[5].Inthispaper,wedescribeourmethodanddemonstrategoodresultswhenappliedtonoisyASRtranscriptsandstreamsofclean(error-free)unsegmentedtext.

Thispaperisdividedintosixsections.Insection2,wesummarizeofprevioustechniquesanddescribehowourmethodrelatestothem.Insection3,wedescribethestandardHMMsegmentationapproach.Insection4,wedescribethetheorybehindtheaspectHMMapproach.Insection5,wereportonexperimentsonbothcleanandASRtext.Insection6,wepresentourconclusionsandsuggestionsforfuturework.2PreviousWork

Thereisaconsiderablebodyofpreviousresearchonwhichthisworkbuilds.Hearst[4]developedtheTextTilingalgorithmwhichusesawordsimilaritymeasurebetweensen-tencesto ndthepointbetweenparagraphsatwhichthetopicchanges.Thisapproachiseffectiveoncleantextwithexplicitsentenceandparagraphstructure.However,itisdif culttoimplementontextproducedbyaspeechrecognitionengine.InadditiontotheunstructurednatureofASRoutput,speechrecognitionenginesonunrestrictedaudiooftenhaveworderrorratesintherangeof20%to50%.SinceHearst’salgorithmcomputescosinesimilaritybetweenrelativelysmallgroupsofwordsoneithersideofasentenceboundary,itisunclearwhetheritwouldberobustenoughinthefaceofmanyerroneouswords.

Beefermanetal.[1]introducedafeature-basedsegmentationmethodwhichdoesnotrequiretextwithparagraphandsentencestructure.Thoughtheirmethodworkswell,manyofthederivedfeaturesarebasedonidentifyingcue-wordswhichindicateanimpendingtopicshift.Inourdomain,higherrorratesoftencloudsuchcuewordsmakingthemdif culttolearnanddetect.

ThemethodwepresentbuildsdirectlyontheHiddenmarkovmodel(HMM)ap-proachofMulbregtetal.[6].Weextendthismodelbyembeddingtheaspectmodel[5]intheHMM.Thisallowsforauni edmodelwithinwhichwe ndbothsegmentclusterstotraintransitionprobabilitiesandlanguagemodelstodetermineobservationemissionprobabilities.

Topic segmentation with an aspect hidden Markov model(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)