g(x1) g(x2)2(x1 x2)a
2 2
x1
x2x12x2x1x2 2
, x1 x2 a
4
………(8分)
2(x1 x2)4aa
2 2
2
x12x2x1x2x1x2x1x2
设t
t 0,令kMN u(t) 2 4t3 4t2,u (t) 4t(3t 2),
由u (t) 0,得t 2,由u (t) 0得0 t 2,
3
3
22
33238g(x) g(x2)38
, u(t) 38,∴所以1 u(t)在t 处取极小值
x x272727312
u(t)在(0,)上是减函数,在(, )上是增函数,
即|g(x1) g(x2)| 38|x1 x2| ………………(12分)
27
9.(1)f(x)的定义域为(0, ),
a 1x2 ax a 1(x 1)(x 1 a)
f'(x) x a
xxx
2分
(x 1)2
. 故f(x)在(0, )单调增加. (i)若a 1 1,即a 2,则 f'(x)
x
(ii)若a 1 1,而a 1,故1 a 2,则当x (a 1,1)时,f'(x) 0.
当x (0,a 1)及x (1, )时,f'(x) 0,故f(x)在(a 1,1)单调减少,在(0,a-1), (1, )单调增加.
(iii)若a 1 1,即a 2,同理可得f(x)在(1,a 1)单调减少,在(0,1),(a 1, ) 单调增加.
(II)考虑函数g(x) f(x) x x2 ax (a 1)lnx x.
a 1a 1
2x (a 1) 1 (a 1 1)2. xx
由于a a5,故g'(x) 0,即g(x)在(0, )单调增加,从而当x1 x2 0时有 g(x1) g(x2) 0,即f(x1) f(x2) x1 x2 0,
f(x1) f(x2)f(x1) f(x2)f(x2) f(x1)
1,当0 x1 x2时,有 1 故
x1 x2x1 x2x2 x1
1
2
由 g'(x) x (a 1)
10解:(I)
a
f (x) x ,g (x) a 1, ……………(2分)
x
∵函数f(x),g(x)在区间[1,3]上都是单调函数且它们的单调性相同, (a 1)(x2 a)
0恒成立,∴当x [1,3]时,f (x) g (x) ……………(4分) x
即(a 1)(x2 a) 0恒成立,