一套很有用的数学竞赛丛书,老师学生皆宜
(3){5,5×2,5×22,5×23,5×24};
(4){7,7×2,7×22,7×23};
(5){9,9×2,9×22,9×23};
(6){11,11×2,11×22,11×23};
(25){49,49×2};
(26){51};
(50){99}。
这样,1-100的正整数就无重复,无遗漏地放进这50个抽屉内了。从这100个数中任取51个数,也即从这50个抽屉内任取51个数,根据抽屉原则,其中必定至少有两个数属于同一个抽屉,即属于(1)-(25)号中的某一个抽屉,显然,在这25个抽屉中的任何同一个抽屉内的两个数中,一个是另一个的整数倍。 说明:
(1)从上面的证明中可以看出,本题能够推广到一般情形:从1-2n的自然数中,任意取出n+1个数,则其中必有两个数,它们中的一个是另一个的整数倍。想一想,为什么?因为1-2n中共含1,3, ,2n-1这n个奇数,因此可以制造n个抽屉,而n+1>n,由抽屉原则,结论就是必然的了。给n以具体值,就可以构造出不同的题目。例2中的n取值是50,还可以编制相反的题目,如:“从前30个自然数中最少要(不看这些数而以任意方式地)取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小的数的倍数?”
(2)如下两个问题的结论都是否定的(n均为正整数)想一想,为什么? ①从2,3,4, ,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?
②从1,2,3, ,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?
你能举出反例,证明上述两个问题的结论都是否定的吗?
(3)如果将(2)中两个问题中任取的n+1个数增加1个,都改成任取n+2个数,则它们的结论是肯定的还是否定的?你能判断证明吗?
例3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。
证明:把前25个自然数分成下面6组:
1; ①
2,3; ②
4,5,6; ③
7,8,9,10; ④
11,12,13,14,15,16; ⑤
17,18,19,20,21,22,23, ⑥
因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍。
说明:
(1)本题可以改变叙述如下:在前25个自然数中任意取出7个数,求证其中存在两个数,它们相互的比值在内。