一套很有用的数学竞赛丛书,老师学生皆宜
99个类中。这种处理问题的方法应当学会,它会助你从“山穷水尽疑无路”时,走入“柳暗花明又一村”中。
最后,本例的结论及证明可以推广到一般情形(而且有加强的环节): 在任意给定的n个整数中,都可以找出若干个数来(可以是一个数),它们的和可被n整除,而且,在任意给定的排定顺序的n个整数中,都可以找出若干个连续的项(可以是一项),它们的和可被n整除。
将以上一般结论中的n赋以相应的年份的值如1999,2000,2001 ,就可以编出相应年份的试题来。如果再赋以特殊背景,则可以编出非常有趣的数学智力题来,如下题:
有100只猴子在吃花生,每只猴子至少吃了1粒花生,多者不限。请你证明:一定有若干只猴子(可以是一只),它们所吃的花生的粒数总和恰好是100的倍数。
(二)于无声处听惊雷--单色三角形问题
前面数例我们看到,抽屉原理的应用多么奇妙,其关键在于恰当地制造抽屉,分割图形,利用自然数分类的不同方法如按剩余类制造抽屉或按奇数乘以2的方幂制造抽屉,利用奇偶性等等,都是制造“抽屉”的方法。大家看到,抽屉原理的道理极其简单,但“于无声处听惊雷”,恰当地精心地应用它,不仅可以解决国内数学竞赛中的问题,而且可以解决国际中学生数学竞赛,例如IM0中的难题。本节我们就来看几个这样的例子。
例7.(第6届国际中学生数学奥林匹克试题)17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。
证明:视17个科学家为17个点,每两个点之间连一条线表示这两个科学家在讨论同一个问题,若讨论第一个问题则在相应两点连红线,若讨论第2个问题则在相应两点连条黄线,若讨论第3个问题则在相应两点连条蓝线。三名科学家研究同一个问题就转化为找到一个三边同颜色的三角形。
考虑科学家A,他要与另外的16位科学家每人通信讨论一个问题,相应于从A出发引出16条线段,将它们染成3种颜色,而16=3×5+1,因而必有6=5+1条同色,不妨记为AB1,AB2,AB3,AB4,AB5,AB6同红色,若Bi(i=1,2, ,6)
之间有红线,则出现红色三角线,命题已成立;否则B1,B2,B3,B4,B5,B6之间的连线只染有黄蓝两色。
考虑从B1引出的5条线,B1B2,B1B3,B1B4,B1B5,B1B6,用两种颜色染色,因
为5=2×2+1,故必有3=2+1条线段同色,假设为黄色,并记它们为B1B2,B1B3,B1B4。这时若B2,B3,B4之间有黄线,则有黄色三角形,命题也成立,若B2,B3,B4,之间无黄线,则△B2,B3,B4,必为蓝色三角形,命题仍然成立。
说明:(1)本题源于一个古典问题--世界上任意6个人中必有3人互相认识,或互相不认识。(美国普特南数学竞赛题)。
(2)将互相认识用红色表示,将互相不认识用蓝色表示,(1)将化为一个染色问题,成为一个图论问题:空间六个点,任何三点不共线,四点不共面,每两点之间连线都涂上红色或蓝色。求证:存在三点,它们所成的三角形三边同色。
(3)问题(2)可以往两个方向推广:其一是颜色的种数,其二是点数。 本例便是方向一的进展,其证明已知上述。如果继续沿此方向前进,可有下题: