即(x 1)f (x) 2f(x) 0, 则f(x) C。 2(1 x)
1。 2(1 x)
1
x又f(0) 1,所以C 1,于是f(x) f(x)) e3,所以 limx 0x 0xx
f(x)f(x)) 0,即 lim(x ) 0 由于分母极限为0,所以 limln(1 x x 0x 0xx
f(x)lim 0,又因为 f(x)在x 0连续,则 limf(x) f(0) 0 x 0x 0x
f(x)ln(1 x )f(x) f(0)f (0) lim 0,由 lim 3 得 x 0x 0x 0x
f(x)f(x)ln(1 x )x lim lim(1 f(x)) 3,所以 limx 0x 0x 0xxx2
f(x)f (x)f (x) f (0)lim2 2,即 lim 2,由此得 f (0) lim 4 x 0xx 02xx 0x 0(16)解:(1)因为 lim(1 x
limf(x)x 0) e(2)lim(1 x 0x1xln(1 f(x))xln(1 x f(x)) 3 ef(x)limx 0x ex 0limf(x)x2 e2
(17) 证明:在x 0处,将f(x)Taylor展开, f(x) f(0) f (0)2f ( )3x x,( 在x,0之间),则 23!
f (0)f ( 1) 1 f(1) f(0) ,(0 1 1), 23! f ( 1) f ( 2) 6. 0 f( 1) f(0) f (0) f( 2),( 1 0)2 23!
由f (x)的连续性知,f (x)在[ 1, 2]上有最大最小值,分别设为M,m,则 m 1[f ( 1) f ( 2)] 3 M [ 1, 2] ( 1,1),f ( ) 3. 2
u u u 2u 2u 2u 2u(18)解: ,2 2 2 2, x x
22 u u u 2u 2u2 u2 u, a b, a 2ab b y y2 2 2
2u 2u 2u 2u a2 (a b) b2 x y