湖南大学出版社《数值计算方法》课后题答案
15
12
12
1.133 5.281 6.414,
24.14 1.21022.93
x x
x x
+=
⎧
⎨
-=
⎩
解:高斯消元法
() 1.1330 5.2810 6.4140
A|b
24.14 -1.210 22.93
⎛⎫
= ⎪
⎝⎭
=
1.1330 5.2810 6.4140
0 -113.7284 -113.7284
⎛⎫
⎪
⎝⎭(1,1)T
x=
列选主元法
() 1.1330 5.2810 6.4140
A|b
24.14 -1.210 22.93
⎛⎫
= ⎪
⎝⎭
24.14 -1.210 22.93
1.1330 5.2810 6.4140
⎛⎫
= ⎪
⎝⎭
24.1400 -1.2100 22.9300
0 5.3378 5.3378
⎛⎫
= ⎪
⎝⎭
(1,1)T
x=
3.方程组Ax=b 经过一次Gauss消元后,系数矩阵A=()(1),1n ij i j
a
=
, 变为
(1)
11
(2)
*
a
A
⎛⎫
⎪
⎝⎭
,其中
(2)
A=()(2),2n ij i j
a
=
为(n-1)⨯(n-1)矩阵.其元素为
(2)
ij
a=(1)
ij
a-(1)(1)
11
i j
a a/(1)
11
a, ,i j=2,3,n.
证明下面结论:(1)当A对称正定时, (2)
A也对称正定;
(2)当A对角占优时, (2)
A也对角占优.
证明:(1)因为A对称,所以(1)(1)
i j ji
a a
=;
(2)
ij
a=(1)
ij
a-(1)(1)
11
i j
a a/(1)
11
a=(1)(1)(1)(1)
1111
/
ji j i
a a a a
-=(2)
ji
a
故(2)
A对称;
A正定, ∴(1)
11
a>,又
(1)
11
(2)
*
a
A
⎛⎫
⎪
⎝⎭
=
1
L A