定理得出∠A+∠ACB+∠ABC=180°,即得.
【详解】
解:∵∠1、∠2是△ABC的外角,
解析:80°
【分析】
先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.
【详解】
解:∵∠1、∠2是△ABC的外角,∠1+∠2=260°,
∴∠A+∠ACB+∠A+∠ABC=260°,
∵∠A+∠ACB+∠ABC=180°,
∴∠A=80°,
故答案为:80°.
【点睛】
本题考查了三角形内角和定理和三角形外角性质的应用,能根据三角形的外角性质得∠A+∠ACB+∠A+∠ABC=260°是解题关键.
18.【分析】
根据平方差公式进行解答.
【详解】
解:∵49y2-x2 =(-7y)2-x2,
∴(-7x+y)(-7x-y)=49y2-x2.
故答案为-7x-y.
【点睛】
本题考查了平方差公式,
--
解析:7y x
【分析】
根据平方差公式进行解答.
【详解】
解:∵49y2-x2 =(-7y)2-x2,
∴(-7x+y)(-7x-y)=49y2-x2.
故答案为-7x-y.
【点睛】
本题考查了平方差公式,掌握平方差公式的特征是解题的关键.
19.x2+4xy+4y2
【分析】
根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】