【分析】
根据对顶角的性质得到BD∥CE的条件,然后根据平行线的性质得到∠B=∠C,已知
∠C=∠D,则得到满足AB∥EF的条件,再根据两直线平行,内错角相等得到∠A=∠F.【详解】
证明:∵∠2=∠3,∠1=∠2,
∴∠1=∠3,
∴BD∥CE,
∴∠C=∠ABD;
又∵∠C=∠D,
∴∠D=∠ABD,
∴AB∥EF,
∴∠A=∠F.
考点:平行线的判定与性质;对顶角、邻补角.
28.(1)400;(2)补全条形统计图见解析,54°;(3)180人
【分析】
(1)根据A类的人数和所占的百分比可以求得本次调查的学生数;
(2)根据(1)中的结果和条形统计图中的数据可以求得B类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C类所对应扇形的圆心角的度数;
(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】
解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,
故答案为:400;
(2)B种情况下的人数为:400-80-60-20=240(人),
补全的条形统计图如图所示,
在扇形统计图中计算C类所对应扇形的圆心角的度数为:
60
360
400
︒⨯=54°,
故答案为:54°;
(3)
20
3600
400
⨯=180(人),
即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】