系数化为1,得
1
2 m=.
故
1
2 m=.
【点睛】
本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.
三、解答题
21.(1)6;(2)8.
【分析】
(1)先将原式转化为(a+b)2-2ab,再将已知代入计算可得;
(2)先将原式转化为(a+b)2-4ab,再将已知代入计算计算可得.
【详解】
解:(1)当a+b=2,ab=-1时,
原式=(a+b)2-2ab
=22-2×(-1)
=4+2
=6;
(2)当a+b=2,ab=-1时,
原式=(a+b)2-4ab
=22-4×(-1)
=4+4
=8.
【点睛】
本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.
22.(1)
24
,
21
x x
y y
==
⎧⎧
⎨⎨
==
⎩⎩
(2)-
13
6
(3)
2.5
x
y
=
⎧
⎨
=
⎩
【解析】
分析:(1)先对方程变形为x=6-2y,然后可带入数值求解;
(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;
(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;
详解:(1)∵x+2y-6=0
∴x=6-2y
当y=1时,x=4,
当y=2时,x=2