高三数列优秀综合题集锦
赵玉苗
1.已知数列{an}满足a1 1,a2 3,an 1 4an 3an 1(n N 且n 2). (Ⅰ)证明数列{an 1 an}是等比数列,并求出数列{an}的通项公式; (Ⅱ)设数列 bn 的前n项和为Sn,且对一切n N,都有
bb1b2
n 2n 1 成立,求Sn. a12a2nan
解:(Ⅰ)由an 1 4an 3an 1可得an 1 an 3(an an 1) 所以数列{an 1 an}是以2为首项,3为公比的等比数列
n 1
故有an (an an 1) (an 1 an 2) (a2 a1) a1 2(1 3) 1 3n 1
1 3
(Ⅱ) 由 b1 b2 bn 2n 1可知当n 1时,b1 3,b1 3,S1 3
a1
2a2
nan
a1
当n 2时,bn 2n 1 (2n 1) 2,bn 2n 3n 1
nan
Sn b1 b2 bn 3 2 2 3 2 3 32 2 n 3n 1 2(1 30 2 31 3 32 n 3n 1) 1
设x 1 30 2 31 3 32 n 3n 1
3x 1 31 2 32 (n 1) 3n 1 n 3n
2x n 3n (3n 1 3n 2 30) n 3n 3
n
1
2
1313
Sn (n ) 3n 综上Sn (n ) 3n ,n N
2222
2.已知数列{an}的前n项和Sn
(1)求{an}的通项公式;
3*
(an 1),n N. 2
(2)若对于任意的n N,有k an 4n 1成立,求实数k的取值范围.
*
33
(an 1),n N,所以Sn 1 (an 1 1). 22
33
两式相减,得Sn 1 Sn (an 1 an),即an 1 (an 1 an),
22
解:(1)因为Sn ∴an 1 3an,n N. 又S1
33
(a1 1),即a1 (a1 1),所以a1 3. 22