八、(7分)求微分方程y
y
ex满足初始条件y 1 0的特解. x
《高数》试卷3参考答案
一.1.x
2
3 2.a 4 3.x 2 4.exf'(ex)
5.1 6.0 7.2xe x2 8.二阶
x
二.1.原式=lim 1 x 0
x
2.lim
x 3
11 x 36
1 12x 1
2
)] e23.原式=lim[(1x 2x
三.1.y' 22,y'(0) 1
(x 2)2
2.dy sinxecosxdx
3.两边对x求写:y xy' ex y(1 y')
ex y yxy y
y' x ex yx xy
四.1.原式=limx 2cosx C
xx2
2.原式= lim(1 x)d() lim(1 x) 1 x2d[lim(1 x)]
2x2
x1xx211
dx lim(1 x) (x 1 )dx =lim(1 x)
221 x221 x
2
2
x21x2
=lim(1 x) [ x lim(1 x)] C
222
1
3.原式=1 0e2xd(2x) 1e2x10 1(e2 1)
222
dy t 1且t ,y 1 五.dy sint
dxdx22
切线:y 1 x ,即y x 1
22
2
0 0
法线:y 1 (x ),即y x 1
1
2
六.S 0(x2 1)dx (1x2 x)10 3
2
2
V (x2 1)2dx (x4 2x2 1)dx
11
x52228 ( x x)1 0
5315