立体几何
平面.
1. 经过不在同一条直线上的三点确定一个面.
注:两两相交且不过同一点的四条直线必在同一平面内.
2. 两个平面可将平面分成.(①两个平面平行,②两个平面相交)
3. 过三条互相平行的直线可以确定个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行) 一、 空间直线.
1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内
[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(³)(可能两条直线平行,也可能是点和直线等)
②直线在平面外,指的位置关系:平行或相交
③若直线a、b异面,a平行于平面 ,b与 的关系是相交、平行、在平面 内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑥在同一平面内的射影长相等,则斜线长相等.(³)(并非是从平面外一点向这个平面所引..的垂线段和斜线段)
⑦a,b是夹在两平行平面间的线段,若a b,则a,b的位置关系为相交或平行或异面. 2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)
3. 平行公理:平行于同一条直线的两条直线互相平行.
4. 相等. (二面角的取值范围 0 ,180 )
12 1 (直线与直线所成角 0 ,90 )
2 (斜线与平面成角 0 ,90 ) 方向相同 方向不相同 (直线与平面所成角 0 ,90 )
(向量与向量所成角 [0 ,180 ])
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.
二、 直线与平面平行、直线与平面垂直.
1. 空间直线与平面位置分三种:相交、平行、在平面内.
2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)
[注]:①直线a与平面 内一条直线平行,则a∥ . (³)(平面外一条直线) ②直线a与平面 内一条直线相交,则a与平面 相交. (³)(平面外一条直线) ③若直线a与平面 平行,则 内必存在无数条直线与a平行. (√)(不是任意一条直线,可利用平行的传递性证之)
④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (³)(可能在此平面内)
⑤平行于同一直线的两个平面平行.(³)(两个平面可能相交) ⑥平行于同一个平面的两直线平行.(³)(两直线可能相交或者异面) ⑦直线l与平面 、 所成角相等,则 ∥ .(³)( 、 可能相交) 3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)