0102
( 1)t(p1p2 pn)a1p1a2p2 anpn (2) 0
n 1
n0
( 1)
t(23 n1)
a12a23 a(n 1)nan1
( 1)n 1 1 2 3 n ( 1)n 1n! 5.用行列式的定义证明:
a11a21
(1) 0
a12a22000a12a22a32a42
a13a2300000a33a44
a14a24a34a44a5400a34a45
a15a25
a35 0;
a45a55a11a21
a12a33
a22a43
a34a44
00a11
(2)
a21a31a41
.
a11a21
证:(1) D 0
a12a22000
a13a23000
a14a24a34a44a54
a15a25
a35 ( 1)t(p1p2p3p4p5)a1p1a2p2a3p3a4p4a5p5 a45a55
00
假设有a1P1a2P2a3P3a4P4a5P5 0,由已知p3,p4,p5必等于4或5,从而p3,p4,p5中至少有两个相等,这与p1,p2,p3,p4,p5是1,2,3,4,5的一个全排列矛盾,故所有项
a1P1a2P2a3P3a4P4a5P5 0,因此D 0.
a11
(2)
a12a22a32a42
00a33a43
00a34a44
( 1)t(p1p2p3p4)a1p1a2p2a3p3a4p4,由已知,只有当p1,p2
a21a31a41
取1或2时,a1p1a2p2a3p3a4p4 0,而p1,p2,p3,p4是1,2,3,4的一个全排列,故p3,p4取
3或4,于是
·3·