n(n 1) 原式 ( 1)
2
a.
(3) 经列的交换,得
a1p1
a1p2 a1pna11a12 a1n
a2p1a2p2 a2pn
pn)
a21a22 a2n (p1p2 pn) ( 1) (p1p2
( 1)a
anp1
anp2
anpn
an1
an2 ann
11 1 故原式 ( 1) (p1p2 pn)
a a
11 1
p1p2 pn
0.
1
1 1
10.计算行列式
a aa000100b1 11 aa00
(1)
0a2b200b; (2) 0 11 aa0;
3a30b00 11 aa4
a4
000 11 a61111 10001
61110 100
(3) 1
1611; (4) 00 10.
11161000 111
11
6
k000
a100b1a100b1a1b100 解:(1) 0a2b200b3a30
b400a4b4a4000b
3a30
00a3b3b4
a4
a2b20
b2
a2
a1b1a3b3b (a1a4 b1b4)(a2a3 b2b3).
4
a4b2
a2
(2) 将前4行依次加到第5行,再按第5行展开得
aa000
11 aa0
aa00
原式 0 11 aa
0 a5
11 aa0
00 11 aa
0 11 aa
a000
1
00 11 a
9·
·