a0 0
按第1行展开 0a 01 1
( 1)a ( 1)1 n
00 a
an ( 1)1 n( 1)n 1 1an 2 an an 2.
00 01a0 0a
0 0 00 a0
11 11
(6) Dn 1 1
11111 1 1110 2000 2 000100 2
( 2)n 1 ( 1)n 12n 1. 7.证明
a2
(1) 2a
abb2
1a2
证:2a
a b2b (a b)2 11ab
b2
a b2b2a a ba b 2b2b
c ( 1)c3
112001
3 3
c1 ( 1)c2
a2 abab b2b2
1
a(a b)b(a b)
( 1)
a ba bab
(a b)2 (a b)3
11
a2
(2)
(a 1)2(b 1)2(c 1)2(d 1)2
a2b2c
2
(a 2)2(b 2)2(c 2)2(d 2)2
(a 3)2(b 3)2(c 3)2(d 3)2
a2 4a 4b2 4b 4c 4c 4
2
b2c2d2
0
a2 2a 1b2 2b 1c 2c 1
2
a2 6a 9b2 6b 9c 6c 9
2
证:等式左端
d2
·6·
d2 2d 1d2 4d 4d2 6d 9