手机版

2021届高考数学一轮复习(文理通用)-测试卷22-抛物(5)

发布时间:2021-06-07   来源:未知    
字号:

【答案】A

【解析】由抛物线定义可知点P 到准线l 的距离等于点P 到焦点F 的距离,由抛物线y 2=4x 及直线方程3x +4y +7=0可得直线与抛物线相离,∴点P 到准线l 的距离与点P 到直线3x +4y +7=0的距离之和的最小值为点F (1,0)到直线3x +4y +7=0的距离,即

|3+7|32+42=2. 6.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )

A.4

B.6

C.8

D.12

【答案】 B

【解析】 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B.

7.设抛物线C :y 2

=3x 的焦点为F ,点A 为C 上一点,若|FA |=3,则直线FA 的倾斜角为( )

A.

π3 B.π4 C.π3或2π3 D.π4或3π4 【答案】 C

【解析】 如图,作AH ⊥l 于H ,则|AH |=|FA |=3,作FE ⊥AH 于E ,则|AE |=3-32=32

,在Rt △AEF 中,cos ∠EAF =|AE ||AF |=12,∴∠EAF =π3,即直线FA 的倾斜角为π3,同理点A 在x 轴下方时,直线FA 的倾斜角为2π3

.

8.已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若·=-12,则抛物线C 的方程为( )

A.x 2

8y B.x 2

=4y

2021届高考数学一轮复习(文理通用)-测试卷22-抛物(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)