【答案】A
【解析】由抛物线定义可知点P 到准线l 的距离等于点P 到焦点F 的距离,由抛物线y 2=4x 及直线方程3x +4y +7=0可得直线与抛物线相离,∴点P 到准线l 的距离与点P 到直线3x +4y +7=0的距离之和的最小值为点F (1,0)到直线3x +4y +7=0的距离,即
|3+7|32+42=2. 6.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )
A.4
B.6
C.8
D.12
【答案】 B
【解析】 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B.
7.设抛物线C :y 2
=3x 的焦点为F ,点A 为C 上一点,若|FA |=3,则直线FA 的倾斜角为( )
A.
π3 B.π4 C.π3或2π3 D.π4或3π4 【答案】 C
【解析】 如图,作AH ⊥l 于H ,则|AH |=|FA |=3,作FE ⊥AH 于E ,则|AE |=3-32=32
,在Rt △AEF 中,cos ∠EAF =|AE ||AF |=12,∴∠EAF =π3,即直线FA 的倾斜角为π3,同理点A 在x 轴下方时,直线FA 的倾斜角为2π3
.
8.已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若·=-12,则抛物线C 的方程为( )
A.x 2
=
8y B.x 2
=4y