∴100+≤160,
解得n≥620,
∵﹣2<0,
∴n≥620时,w随n的增大而减小,
∴当n=620时,w有增大值为19200元.
答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.
23.【解答】解:探究一:
(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为4+5=9,这2个整数之和共有9﹣3+1=7种不同情况;
故答案为:7;
(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为n+n﹣1=2n﹣1,这2个整数之和共有2n﹣1﹣3+1=2n﹣3种不同情况;
故答案为:2n﹣3;
探究二:
(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为2+3+4=9,这3个整数之和共有9﹣6+1=4种不同情况;
故答案为:4;
(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和的最小值为1+2+3=6,最大值为n+(n﹣1)+(n﹣2)=3n﹣3,这3个整数之和共有3n﹣3﹣6+1=3n﹣8种不同结果,故答案为:3n﹣8;
探究三:
从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和的最小值为1+2+3+4=10,最大值为n+(n﹣1)+(n﹣2)+(n﹣3)=4n﹣6,因此这4个整数之和共有4n﹣6﹣10+1=4n﹣15种不同结果,
归纳总结:
从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取a个整数,这a个整数之和的最小值为1+2+…+a=,最大值为n+(n﹣1)+(n﹣2)+(n﹣3)+…+(n﹣a+1)=na﹣,因此这a个整