常数,则
1f(z)
为常数,故f(z)为常数.
16.解:(1)因为 u x2 xy y2,所以有 ux 2x y vy 2x y
v 2xy
y
2
2
c(x)
vx 2y c (x) uy 2y x
c (x) x c(x)
x
2
2
D
f(z) (x xy y) (2xy
i
22
y
2
2
x
2
2
D)i
12
由已知f(i)=-1+i -1+i=-1+ Di D
2
12)
f(z) (x xy y) i(2xy
22
y
2
2
x
2
2
(2)由C R条件,vy ux ex(xcosy ysiny) excoy,则 v (xexcosy exysiny excoy)dy xexsiny exsiny exysinydy xexsiny exycosy (x) 又因uy vx,故
esiny esiny eycosy (esiny xesiny ecosy (x))
x
x
x
x
x
x
即 (x) 0, (x) C,故
f(z) e(xcosy ysiny) i(xesiny eycosy C)
x
x
x
又因f(0) 0,故f(0) iC 0 C 0,所以 f(z) ex(xcosy ysiny) i(xexsiny exycosy) (3) 由C R条件, uy vx
2xy(x y)
2
2
2
,所以