扩散方式。将人口增长和扩散的相互作用、拥挤避免包含进一个系统,我们得到了单物种模型。为了证明这个策略在进化上式稳定的,我们考察另一种物种就入侵而言演化的稳定性。
为此我们将原来的单物种模型发展到两物种模型。最终我们计划研究:演化稳定的理想自由扩散与其他扩散策略的比较。通过上述的证明,我们得到了定理4.5.即证明了问题(3.1)在整个时间区间上存在唯一古典解。
需要说明的是,本文所得出的整体存在的结果对于模型的各个方面都有着许多限制(例如一维条件,初始条件的形式等)。虽然按照各种扩散机理可以对所研究的模型进行分类,但是我们将来一个重要的目标是把具适应性的人口疏散模型的结果延伸到更多普遍的情况中去。
由于适应性行为时一个极为复杂的过程,伴随着各种各样不同因素对运动反应过程的作用。
所以,具有各种不同因素的模型都将会给抛物型偏微分方程系统带来一个广阔的研究拓展领域。对于无论是会导致整体存在还是不会导致整体存在的模型类别的了解都会有助于提高对各种不同因素相关重要性的理解。
参考文献
[1] H. Amann, Dynamic theory of quasilinear parabolic equations, II: Reaction–diffusion systems, Differential Integral Equations
3 (1990) 13–75.
21