2002年全国硕士研究生入学统一考试
数学一试题
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)
e
dx
=xln2x
.
.
.
(2)已知函数y
y(x)由方程ey 6xy x2 1 0确定,则y (0)=
(3)微分方程yy (4)已知实二次型
y 2 0满足初始条件y
x 0
1,y'
x 0
1
的特解是 2
22
f(x1,x2,x3) a(x12 x2 x3) 4x1x2 4x1x3 4x2x3经正交变换
x Py可化成标准型f 6y12,则a=2
(5)设随机变量X服从正态分布N( , 率为
)( 0),且二次方程y2 4y X 0无实根的概
1
,则 =2
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)
(1)考虑二元函数f(x,y)的下面4条性质: ①f(x,y)在点(x0,y0)处连续; ③f(x,y)在点(x0,y0)处可微;
②f(x,y)在点(x0,y0)处的两个偏导数连续; ④f(x,y)在点(x0,y0)处的两个偏导数存在.
若用“P Q”表示可由性质P推出性质Q,则有
(A) ② ③ ①. (C) ③ ④ ①.
n11
(2)设un 0(n 1,2,3,L),且lim 1,则级数 ( 1)n 1( )
n uunun 1n 1n
(B) ③ ② ①. (D) ③ ① ④.
(A) 发散.
(B) 绝对收敛.
(D) 收敛性根据所给条件不能判定.
(C) 条件收敛.