免费下载
2、弦切角定理相关知识:
①弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。
②弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。即:∠BAC=∠ADC
2、 切割线定理:PA为⊙O切线,PBC为⊙O割线,则PA PB PC
第十三章 图形的变换
考点一、平移
1、定义:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。 2、性质
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动 (2)连接各组对应点的线段平行(或在同一直线上)且相等。 考点二、轴对称、
1、定义:把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。 2、性质
(1)关于某条直线对称的两个图形是全等形。(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。 4、轴对称图形:把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。 考点三、旋转
1、定义:把一个图形绕某点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。 2、性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。 考点四、中心对称
1、定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 2、性质
(1)关于中心对称的两个图形是全等形。(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 考点五、坐标系中对称点的特征 1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y) 2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称
15
2
点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
第十四章 图形的相似
考点一、比例线段
1、比例线段的相关概念
如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,
am
或写成a:b=m:n, bn
在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,
ac bd
,简称比例线段
若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。 如果作为比例内项的是两条相同的线段,即例中项。
2、比例的性质
(1)基本性质:①a:b=c:d ad=bc ②a:b=b:c b(2)更比性质(交换比例的内项或外项)
2
ab bc
或a:b=b:c,那么线段b叫做线段a,c的比
ac
ab
(交换内项) cd
acdc
(交换外项) bdba
db
(同时交换内项和外项)
ca
acbd
(3)反比性质(交换比的前项、后项): bdac
aca bc d
(4)合比性质:
bdbd
(5)等比性质:
acema c e ma
(b d f n 0) bdfnb d f nb
3、黄金分割
把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段