手机版

第1章 解三角形教案(3)

发布时间:2021-06-06   来源:未知    
字号:

之间的普遍联系与辩证统一。 ●教学重点

正弦定理的探索和证明及其基本应用。 ●教学难点

已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入

如图1.1-1,固定 ABC的边CB及 B,使边AC绕着顶点C转动。思考: C的大小与它的对边AB的长度之间有怎样的数量关系?

显然,边AB的长度随着其对角 C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来?Ⅱ.讲授新课

[探索研究] (图1.1-1)

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有

a

sinA,c

bc

sinB,又sinC 1 cc

abc则 csinsinsinabc

从而在直角三角形ABC中, C a B

sinAsinBsinC

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinB bsinA,则同理可得从而

a

sinA

b

sinB

,c

sinC

b

sinB

, A c B

sinAsinBsinC

(图1.1-3)

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A作j AC, C 由向量的加法可得 AB AC CB

abc

则 j AB j (AC CB)

∴j AB j AC j CB j

jABcos 900 A 0 jCBcos 900 C

第1章 解三角形教案(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)