故当n=16时,Sn有最大值,Sn的最大值是256. 法二:由Sn=32n-n=n(32-n),欲使Sn有最大值, 应有1<n<32,从而Sn≤
2
n+32-n 2=256,
2
当且仅当n=32-n,即n=16时,Sn有最大值
256.
1.等差数列中,3(a3+a5)+2(a7+a10+a13)=24,则该数列前13项的和是( ) A.156 C.26
B.52 D.13
解析:选C ∵a3+a5=2a4,a7+a10+a13=3a10, ∴6(a4+a10)=24,故a4+a10=4. 13∴S13=
a1+a132
13a4+a102
=26.
2.在等差数列{an}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18
=12,则数列{|an|}的前18项和T18的值是( )
A.24 C.60
B.48 D.84
解析:选C 由a1>0,a10·a11<0可知d<0,a10>0,a11<0,故T18=a1+ +a10-a11- -
a18=S10-(S18-S10)=60.
3.数列{an}满足an+1+an=4n-3(n∈N). (1)若{an}是等差数列,求其通项公式;
(2)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1. 解:(1)由题意得an+1+an=4n-3,①
*
an+2+an+1=4n+1,②
②-①得an+2-an=4,
∵{an}是等差数列,设公差为d,∴d=2. ∵a1+a2=1,∴a1+a1+d=1, 1
∴a1=-,
25
∴an=2n-2
(2)∵a1=2,a1+a2=1,∴a2=-1.
又∵an+2-an=4,∴数列的奇数项与偶数项分别成等差数列,公差均为4, ∴a2n-1=4n-2,a2n=4n-5,
S2n+1=(a1+a3+ +a2n+1)+(a2+a4+ +a2n)