手机版

等腰三角形讲义1(4)

发布时间:2021-06-07   来源:未知    
字号:

讲义

所以∠EBD=∠ECD,

所以∠EBD+∠1=∠ECD+∠2, 即:∠ABC=∠ACB, 所以AB=AC。

在△AEB和△AEC中,

所以△ABE≌△AEC, 所以∠3=∠4,

所以AD⊥BC(等腰三角形的“三线合一”)。

【变式2】已知△ABC为等边三角形,在图4中,点M是线段BC上任意一点,点N是线段CA上任意一点,且BM=CN,直线BN与AM相交于Q点。

(1)请猜一猜:图4中∠BQM等于多少度?

(2)若M、N两点分别在线段BC、CA的延长线上,其它条件下不变,如图5所示,(1)中的结论是否仍

然成立?如果成立,请加以证明;如果不成立,请说明理由。

【答案】(1)题通常猜想、测量或证明等方法不难发现∠BQM=60°,而且这一结论在图形发生变化后仍然成立。(2)题的证明过程如下: 因为△ABC为等边三角形,

所以AB=AC,∠BAC=∠ACB=60°, 所以∠ACM=∠BAN。

等腰三角形讲义1(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)