华中师范大学专用
3secttantdt,
√
=|3tant|.
√
dx=
3|tant|3sect3secttantdt
=3
|tant|tantdt =3
tan2tdt,0<t<π,
3
tan2tdt,π<t<π.=
3(tant t)+C,0<t<π, 3(tant t)+C,π<t<π.√=√ 3arctan√
+C, 3arctan√x>3,
+C,x< 3.
= √
x2 9 3arctan
3
+C. {2.-u=√
K,du=xdx √
=
xdxx2 9=
x2xdxu2
du
=
u2+9[1 9
u2+9
]du
=u 3arctanu
3+C
= √
x2 9 3arctan3+C.
(9)
dx
1+dx=u==√
====
udu1+u
=u ln(1+u)=√
+ ln(1+√C
+C.
14
(0.34)
(0.35)
(0.36)