华中师范大学专用
1
dxx+1
1
dx=
x4+2x2+1 2x2
1
dx=
(x2+1)2 2x2
1
=dx(x2++1)(x2 x+1)
√ √11 x+x = dxx2++1x2 +1
√√√ √11 + (2x+(2x = dxx2++1x2 x+1√√
√√√√22
[ln(x+x+1) ln(x x+1)]+[arctan(+1)+arctan(x 1)]+C=84√√√
√√x2++1=ln+[arctan(x+1)+arctan( 1)]+C
84x2 +1
(0.57)4.
1
dx3+sinx
2
=dx
7 cos2x
21u=tanx
=======du u1+u2
7 1
du
=
4u+3122u
=arctan+C412tanx=arctan+C.25.
(0.58)
21