华中师范大学专用
(4)
(arcsinx)2dx
1
=x(arcsinx)2 x2arcsinxdx=x(arcsinx)2+ 2arcsinxd
1 x2
=x(arcsinx)2
+2 1 x2arcsinx 1 x22dx
=x(arcsinx)2
+2 1 x2arcsinx 2x+C.(5)
exsin2xdx=1 ex(1 cos2x)dx=1x1
2e 2
excos2xdxÏ §
excos2xdx=
cos2xdex
=ex
cos2x+2 exsin2xdx
=ex
cos2x+2
sin2xde
x
=excos2x+2[exsin2x
2excos2xdx]=excos2x+2exsin2x 4
excos2xdx]
¤±
excos2xdx
=1
5
[excos2x+2exsin2x]+C18
(0.47)
(0.48)
(0.49)
(0.50)