华中师范大学专用
{1:(n {)x=tant
1
(x2+1)2dx
sec2=tsec4tdt
=
cos2tdt= 12[1+cos2t]dt
=1
2[t+12sin2t]=1x2arctanx+2(x2+1)+C. {2:(©ÜÈ©{)
1
(x2+1)dx
=
2 12xd1x+1
=
112xx+1
1 1
x+1d2x
= 1
12x(x2+1) 2(x2+1)x2
dx=
11
2x(x2+1) 12x2 1
x2+1
dx= 11 12x(x2+1) 2[x arctanx]+C=12arctanx+x2(x+1)+C.(2) y²:
7
(0.11)
(0.12)