华中师范大学专用
(10)
1
x(x+a)
dx,
(a=0)
-u=xn+a,K,du=nxn 1dx,
dx=
du
1
x(x+adx
=
)du
nu(u a)=1 na[1u a 1u]du=1u analn|u
|+C=1
ln|xn|+C. 1
x(xn+adx
=
)11
xn 1a[x xn+a]dx
=1aln|x| 1naln|xn+a|+C.(11)
sinxcos3x
1+cos2xdx
cos3= x
dcosx
==u=cos====x
=
u31du
=
+u[u
1+u u]du
=1
[ln(1+u2) u22]+C=1
[ln(1+cos2x) cos2x]+C. 2=1
2
[ln(2 sin2x)+sin2
x]+C15
(0.37)
(0.38)
(0.39)
(0.40)
):