1. 在平行四边形ABCD中,∠A+∠C=270°,则∠B=___,∠C=____.
2. 平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长
为____.
3. 平行四边形的两条对角线把它分成全等三角形的对数是( )
A.2 B.4 C.6 D.8
4. 如图,平行四边形ABCD中,对角线AC、BD交于点O,过点O的直线分别交AD、BC于E、
F,则图中的全等三角形共有___对.
5. 关于四边形ABCD:①两组对边分别平行②两组对边分别相等③有两组角相等④对角线
AC和BD相等.以上四个条件中,可以判定四边形ABCD是平行四边形的有______个
平行四边形的性质与判定(四边形性质探索)基础练习
试卷简介:全卷共3个选择题,14个填空题,分值100分,测试时间60分钟。本套试
卷立足基础,主要考察了学生对平行四边形的性质和判定定理的基本掌握情况。各个题目难
度有阶梯性,学生在做题过程中可以回顾本章知识点,认清自己对知识的掌握及灵活运用程
度。
学习建议:本章主要内容是对平行四边形的性质及判定的运用,不仅是中考常考的内容
之一,更是整个数学学科的重要内容之一。本讲题目灵活多变,同学们可以在做题的同时体
会平行四边形在诸多方面的运用,并且关注问题的解决过程。
一、单选题(共3道,每道10分)
1.平行四边行的两条对角线把它分成全等三角形的对数是( )
A.2B.4C.6D.8
答案:B
解题思路:如图:
根据平行四边形的性质,可以得到△ABO≌CDO、△ABD≌△CDB、
△ABC≌△CDA、△AOD≌△COB.所以全等三角形的对数为:4对.
易错点:不能将全等三角形数完全的找出来
试题难度:三颗星 知识点:平行四边形的性质
2.以长为5cm, 4cm, 7cm的三条线段中的的两条为边,另一条为对角线画平行四边形,可
以画出形状不同的平行四边形的个数是( )
A.1B.2C.3D.4
答案:C
解题思路:首先可判断出三条线段满足三角形的三边关系定理,因此可构成平行四边形,因
此可选三条线段中的一条线段作为平行四边形的对角线,即对角线的选取共三种,因此可确
定出来3个平行四边形.故答案为:C
易错点:对该问题的各种情况考虑不全
试题难度:三颗星 知识点:平行四边形的判定与性质
3.由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于
等腰三角形的( )
A.周长B.一腰的长C.周长的一半D.两腰的和
答案:D
解题思路:如图,由平行四边形的性质,∠FDB=∠C,∵△ABC为等腰三角形,∴∠B=∠C,
则∠B=∠FDB,∴BF=DF,同理可得,DE=CE,又∵平行四边形的周长C=AF+FD+DE+AE
=AF+BF+EC+AE=AB+AC,所以答案为:
D.
易错点:不能根据平行四边形的性质进行等量的代换边长,从而找到正确的答案
试题难度:三颗星 知识点:等腰三角形的性质
二、填空题(共14道,每道5分)
1.平行四边形ABCD的周长为22,两条对角线相交于O,△AOB的周长比△BOC的周长大5,
则AD的边长为______.
答案:3
解题思路:如图,在平行四边形ABCD中,∵△AOB的周长比△BOC的周长大5,在平行四边
形ABCD中,OA=OC,∴AB-BC=5,又∵平行四边形ABCD的周长为22,∴AB+BC=11,因
此BC=3,则AD=
3.
易错点:计算过程中的错误
试题难度:三颗星 知识点:平行四边形的性质
2.在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为______.
答案:2
解题思路:如图,在平行四边形ABCD中,根据平行四边形的性质可知,∠AEB=∠EBC,又
∵BE平分∠ABC,∴∠ABE=∠EBC=∠AEB,∴AE=AB=3,又∵BC=AD=5,∴DE=
2.